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Partial crystallization of a polymer chain in a crosslinked system affects inter alia the configurational 
entropy of such a chain. The change in free energy is orientation-dependent and can contribute to 
the distribution of crystal orientations. Using a simple tetrahedron model of the polymer network, 
the change in configurational free energy due to the partial crystallization of polymer chains has been 
derived and its effect on the distribution of crystal orientations analysed. Model numerical calcula- 
tions have been performed for uniaxially stretched polyethylene, and compared with the effects of 
strain energy on crystals embedded in an uncrosslinked matrix and flow potential. 

INTRODUCTION 

In the first paper of this series 1, it was shown that crystal 
orientation in a stressed polymer can be controlled by the 
orientation-dependent free energy of the system F(O). A 
natural contribution to F(O) is the strain energy of an 
anisotropically elastic crystal in a non-spherical stress field, 
Fcr (0). This effect has been derived and analysed in the 
previous paperk In a crosslinked system, where crystals 
appear as sections of chains spanning network junctions 
(crosslinks), the free energy of the amorphous phase is also 
orientation-dependent, Fam = Fam (0) and can contribute 
to the equilibrium distribution of crystal orientations. 

The problem of the crystallization-affected free energy 
of amorphous chains has been approached by several authors. 
Baranov et al. analysed a single polymer chain with fixed 
ends, subjected to partial intramolecular crystallization 
(lamellar growth). Minimization of the related free energy 
vs. orientation angle 0 yielded the most probable orientation 
of the crystal with respect to chain axis: 

Fmi n (O;h  = constant) =~0ma x at h = constant (1) 

This analysis did not include any information about the 
distribution of orientations of crystals in the macroscopic 
system which is composed of many, differently oriented, 
and possibly connected chains. The assumption of fixed 
ends of the chain also seems an overstatement. Even in a 
permanently crosslinked network, individual chain ends can 
move in space together with the crosslinks to which they are 
attached, assuming positions with various free energies. We 
will show that this is the case with crystallizing networks. 

Gaylord 3 discussed the free energy of a single crystallizing 

polymer chain and then averaged it over the linearily trans- 
formed Gaussian distribution function of chain vectors, 
WG( ~ ; A) to obtain the average free energy for a set of many 
chains in the system: 

Fav(O ) = f F ~ ) ; h )  WG~ ;A)dh (2) 

This energy, when minimized with respect to 0 again yielded 
the most probable orientation ~max as a function of the 
deformation parameter A involved in the chain distribution 
function W G. Three objections can be raised to this treat- 
ment. 

(1) W G (h;A) is not the relevant distribution function 
over which the free energy F should be averaged. The correct 
equilibrium function should include a Boltzmann factor, 
exp [ -F(0 ~)/kT] ,  missing in equation (2). 

(2) Because of the symmetry of the functions F(0 ~)  and 
W G (h ;A), the integral in equation (2) is identically equal to 
zero; Gaylord removed this effect by arbitrarily replacing 
components of the vector h by their absolute values. 

(3) The distribution of crystals in the macroscopic system 
is not controlled by the average free energy (F) but by the 
average exponential (exp [ -F(0 ,h)/kT] ). All these points 
will become clear in the course of our analysis. 

The aim of this study was to explain the most important 
factors responsible for thermodynamically-controlled crystal 
orientation in crosslinked polymers, and to compare the 
effect of the orientation effects produced in crosslinked and 
deformed systems with other mechanisms of crystal orien- 
tation (see refs 1, 11). The changes in free energy produced 
by crystallization derived in this paper will also be used for 
the analysis of crystallization rates and the thermodynami- 
cally most probable morphology of crystals. 

0032--3861/79/040411 --08502.00 
© 1979 IPC Business Press POLYMER, 1979, Vol 20, April 411 



Crystal orientation in stressed polymers (2): Leszek Jarecki and Andrzej Ziabicki 

We will consider intramolecular crystallization of one of 
the four chains, say/4, in the deformed state. Figure 2 pre- 
sents schematically the instantaneous configurations of the 
system before deformation (Figure 2a), after deformation in 
the amorphous state (Figure 2b)and after crystallization 
(Figure 2c). h i (i = 1,2, 3, 4) denotes end-to-end vectors of 
the four chains measured from the individual vertices of the 
tetrahedron to the central junction. We will also define a 
position 'O' in the tetrahedron which, occupied by the cen- 
tral junction, minimizes the free energy of the system. The 
chain vectors ending at this point, h/O, satisfy the condition: 

hO/li = 0 (3) 

i= 1 

In the undeformed state (Figure 2a), an instantaneous con- 
figuration of the system is thus characterized by the single 
vector u, i.e. a deviation of the crosslink from the most 
probable (affine) position 'O'. We will also assume that 
lengths of the initial vectors, h O, correspond to their mean- 
square values: 

Figure I 
polymer 

A tetrahedron model of a partly crystallized, crosslinked 

The model of a crystallizing network introduced below is 
simple enough to be treated analytically, and yet involves 
all the essential festures of a real network with low degree 
of crystallinity. The network chain to be crystallized is 
neither fixed at both ends (as assumed in the earlier analy- 
ses 2'3) nor free. Different contour lengths of the network 
chains can explain effects of molecular weight distribution 
in real networks. Calculation of the statistical integrals 
(instead of the minimum free energy discussed in earlier 
treatments of the problem) also leads to results which are 
more general and correct from the thermodynamic point of 
view. It seems that qualitatively our model correctly ref- 
lects all features of the crystallization behaviour of real net- 
works. For quantitative calculations the model can easily 
be extended. 

PARTLY CRYSTALLIZED MODEL NETWORK 

We will consider a simple, one-junction network, a modifica- 
tion of the Flory-Rehner tetrahedron 4,s. Four polymer 
chains exhibiting Gaussian statistics of configurations and 
contour lengths ll, 12, 13 and 14, are connected in a central 
crosslink, the other ends being fLxed at the vertices of the 
tetrahedron (Figure 1). The vertices representing the boun- 
daries of the macroscopic system are subjected to uniform 
boundary conditions defined by the displacement gradient 
tensor A. The central junction, representing the whole inter- 
nal system is free to move and assume any position in the 
space. No affinity of displacement of the central junction 
is assumed. This simple model exhibits all the features of a 
real network, and the small number of degrees of freedom 
guarantees easy mathematical treatment. 

(hO) 2 = Ac(h2oi ) = Aclia (4) 

where <h 2 i) is the unperturbed length and a is the length of 
the statistical chain segment. A c denotes the contraction 
factor, which, for ideal tetrafunctional networks, amounts 
to 1/2 (see refs 6, 7). 

Vectors hi in any configuration of the system, to the 
boundary of which a displacement gradient A was applied, 
can be presented in the form: 

= h ° hi _t +~=h i ,  af+U (5) 

where u is the actual displacement from the 'affine' position 
of the j'unction, and h i af are linear transformations of the 
initial vectors h O wit't~'boundary displacement gradient A. 

The initial contour lengths li(i = 1, 2, 3 and 4) are cons- 
tants and do not change either by deformation or crystalliza- 
tion. The crystal starts at some point on the/4 chain, 
characterized by the end-to-end vector h 5 and contour 
length 15. From the other end of the crystal issues a chain 
characterized by parameters h 6 and l 6. If ~ is the contour 

a 

~ / / / / / / / J / / / / / / / / J / /  

D¢formation 

~ - /  

Figure 2 Scheme of the configuration of the model network in 
three states: (a) before deformation and crystallization; (b) after 
deformation in the amorphous state; (c) after deformation and 
crystallization 
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length of this portion of the chain which is included in the 
crystal, andr  is crystal vector, then the variables hs, h6, 
l 5, 16 satisfy the conditions (see Figure 2c): 

for uncrystallized chains are functions only of the position u 
of the central junction. For Gaussian chains, the statistical 
integrals Z i can be written in the form" 

h 5 + h  6 +r  =h4af + ~ (6) 

15 + l 6 + m = l 4 (7) 

The model introduced above involves eight degrees of free- 
dom represented by the multivector~ = (u, h s , r )  with 
the additional constraint: 

r 2 = constant (8) 

The length of the crystal vector, r ,  the contour length of 
the chain included in the crystal, co, and the starting position 
of the crystal, 15, are assumed to be predetermined constants. 

In the present study we are not interested in 'thermody- 
namic optimum' morphologies, or 'equilibrium' degrees of 
crystallinity; rather we are studying free energy and the rela- 
ted crystal orientation distributions for model networks for 
any given morphology and crystallinity. Hence, the para- 
meters k I, and co are taken as constants rather than variables 
subject to optimization. 

The characteristics of the initial tetrahedron also form a 
set of predetermined parameters ~ = (h O, ll, h O . . . . .  •4)" 

It is evident that our model is intermediate between a 
free-end and a fixed-end crystallizing chain. Partial crystal- 
lization of a free chain hardly affects the conformational en- 
tropy of the uncrystallized portions. The entropy of the por- 
tion of the chain converted into the crystalline phase is the 
only quantity that does change being reduced to zero. On 
the other hand, strong conformational entropy can be ex- 
pected in crystallizing chains with both ends fixed. In our 
model, constraints are applied not to the ends of the crys- 
tallizing chain, but to the boundary of the system (tetra- 
hedron), as in a real network. Mobility of the central junc- 
tion makes possible extension or compression of the crystal- 
lizing chain 14, but at the same time affects conformation of 
the three other, uncrystallized neighbouring chains, 11-13. 
The competition between the entropy gain in fractions 15, 16 
of the crystallizing chain, 14, and entropy loss in the amor- 
phous chains It-13 determines the overall change of the free 
energy of the amorphous phase in the same way as in real 
systems. The assumption that only one out of four network 
chains develops a crystallite, however, limits our model con- 
siderations to systems with a small number of crystallites. 

FREE ENERGY OF A PARTLY CRYSTALLIZED TETRA- 
HEDRON NETWORK 

Zi(u;A,~) = 8(3a/21i)3/2exp ~-3/2)(h i, af +u)2/lia](lO) 

The partly crystallized chain can be treated as two chains 15 
and l 6 and its configurational integral Z4 as a product of the 
respective integrals Z 5 and Z6: 

Z4(~, A, ~) = Z5(h5, 15),Z6(h6, 16) ( l l)  

which with Gaussian statistics of both subchains and the con- 
straints equations (6)-(8) yields: 

Z 4 ( ~ ;  A ,  ~ )  = 6419a2/4 15(l 4 - l 5 -- ~ ) ]  3/2 exp  {-(312a)~2/15 

+ (ha , a f  + u  - h  5 - r ) 2 / ( 1 4  - l 5 - 60)]} (12)  

So, the total free energy of the amorphous part of the system, 
Fam = - kTln  Z, at a given configuration~ can be written 
as" 

2Fam(~ ; A, K)I3kT = constant + ln[15(l 4 - 15 - co)] 

3 

+ ~ (h i,af + u)2/lia + h 2/15a + (ha,af + u - h 5 - r ) 2 /  

i=1 

(14 - 1 5  - co)a 

Most probable configuration o f  the tetrahedron, g*, and 
minimum free energy 

Using equation (13) we will calculate first the most 
probable configuration of the system, i.e. the configuration 
corresponding to the minimum free energy: 

aFam(~, A, K)/O~ = 0 (14) 

The solution of equation (I 4) is: 

r *= Irle4 

u * = [( Ir I/Ih4,af I - s)/(1 + S - sS)] ha,af 

h~/l  5 = 

(15a) 

(15b) 

[1 +S(1 - I L I/~4.af0l/[14(1 + S -  sS)] h4,af 

(15c) 

The statistical configurational integral, Z, of a deformed and 
partly crystallized tetrahedron K at some configuration ~ can 
be presented as a product of the configurational integral~for 
the crystallized chain, Z4(~ ; A, K ) and similar integrals 
for the remaining, uncrystalliz'ed~chains, Zi(~; A, r ), (i = 
1, 2, 3) affected by crystallization of the chain 14: 

3 

Z(~; A , 5 )  = Z4(#; A, 5) l ' - I  Zi(u; A, 5) 

i = l 

(9) 

It is evident that the integral Z 4 for the crystallized chain 
depends on the whole set of variables,~, while Zi(i = 1, 2, 3) 

wheree4 = h4,af/Ih4,af I. In equations (15a)-15(c), s = 
wfl4 denotes the 'local degree of crystallinity' of the crystal 
lizing chain, and 

S = ~ (14/li). 

i=1 

It can be observed that the most probable vectorsr*, h* s 
and u*, are all colinear with the chain vector h4,af. The 
most probable position of the central junction is not affine; 
however, u * 4= O. Depending on the 'local crystallinity', s, 
and h4,af , the junction is shifted forwards (u * > O) or back- 
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wards (u* < 0) along the vector h4,af. If crystal growth 
morphology is strictly determined and constant, then inde- 
pendent of the length of the crystal, the ratio: 

k = ((.Sr I/w)e(O,l) (16) 

can be considered a constant. K depends on the length and 
direction of folds in chain-folded crystals and approaches 
unity asymptotically when the fold length approaches zero. 
In equation (16) the critical condition for u* > 0 becomes 
independent of the local crystallinity, s, or co: 

allow any freedom of motion to the ends of the crystallizing 
chain. 

Orientation-dependent free energy from statistical integrals 
To find the free energy dependent on the crystal orien- 

tation vector,r ,  but independent of the configurational 
variables h5 and u,  the statistical integral, Z, from equation 
(9) should be integrated over the other degrees of freedom: 

u* > 0 ~=~ k > Ih4,af 1/14 (17) 

Formally, the end-to-end vector h4,af is subject to Gaussian 
statistics and can assume any values in the range ( -~ ,+  ~). 
Physically, the maximum extension of h4,af cannot exceed 
its contour length, 14, and the ratio [h4,af Ill 4 is also con- 
fined to the range (0, 1). Consequently, u* is positive (the 
most probable junction position shifted forwards) when k is 
high, i.e. when the crystal is not substantially chain-folded 
and/or the relative extension of the chain I h4,af L/laf is small. 
For highly folded crystals and/or strongly extended chains, 
u* < 0 and the junction is shifted backwards - the crystalliz- 
ing chain is contracted. These two types of crystallization- 
induced behaviour are related to possible changes in the 
internal stress of the crystallizing polymers. 

If conclusions about the crystal orientation are to be 
drawn for the most probable configuration ~*, the orienta- 
tion distribution function for crystals should be equal to 
the distribution of the directions of vectors h4,af. In the 
case of a linearily transformed Gaussian distribution 
leG(h, A) of network chain vectors, the crystal orientation 
function assumes the form: 

OO 

q f f r / I r  I) = constant f WG(h , A)h2dh (18) 

0 

Such a distribution was assumed in an early paper by Flory a. 
It corresponds to the distribution resulting from affine rota- 
tion of rigid, rod-like elements embedded in an infinitely 
viscous medium9-1L We will show later in this paper that 
equation (18) also yields the asymptotic case for the thermo- 
dynamically-controlled distributions. 

The free energy F* m corresponding to the most probable 
configurationS* reads: 

2 F~m(~ ; A, K)/3kT = constant + In [15(l 4 - 15 - w)] 

3 

H Zi(u'A' ~ ) du d-~Sj(4~ra2)3 (20) 

i=1 

For Gaussian chains this yields: 

Z(L ; A,K) = Kexp (-(3/2a)lAr2/14 - B L Th4,af/14 

3 

+ Ch2,af/14 + ~h2aff i i]}  (21) 

i=1 

with dimensionless coefficients: 

K = 512 [27Aa3/8l I l 2 l 3 S] 3/2 

A =s/(1 + s -  sS) 

B = 2A(1 +S)/S 

c=(1 + s + S)A/S 

The orientation-dependent free energy calculated from equa- 
tion (21) reads: 

2Fam(~ ; A, ~)/3kT= -(2/3)INK + Ar2/(h~o) 

- BlLl(2(h20)l/2e TrAe 4 + ~- CeffA TAe4 

3 

2 ~ e T A T A e i  (23) 

i=1 

er  and ei.denote, respectively, unit vectors along the crystal 
and along the affinely transformed ith chain vector hi, af. 
In the uncrystallized state s = 0, r = 0, and the free energy 
reduces to a constant, independent o fe r :  

3 4 

+ ~h2af / l ia+ ( S ( I r  I /Ih4,afl-s)  2 2Fam/3kT=-(2/3)INK + 2 ~ eTAT Aei 

i=1 i=1 

(24) 

+ (1 - s ) [ l  + S( I  - Ir I/Ih4,afl)] 2 

- 2(1 + S -  sS)(lrl/h4,afl-s) I x 
] 

h~,af/14a(1 + S - sS) 2 ( ]9)  

It can be observed that the orientation-dependent part of 
the free energy Fam(~) from equations (13) or (23) is an 
antisymmetric function of both r ( o r  er)  and h4,af: 

Faro (.[. ;h 4,af) = -Fam(~r ;h4,a f ) = -Faro (.L; -h4,af )  (25) 

The minimum free energy, equation (19), differs from that 
calculated by Baranov et al. 2, because the authors did not 

Consequently, integration of Fam with any symmetric func- 
tion o f r  or h4,af(such as I¥ G in equation 2) must inevitably 
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Figure 3 Averaged crystal orientation distribution, qjth,am (0) in 
a system subjected to uniaxial extension, Ane  t = constant = 2, values 
of the extension ratio, k: A,  k = 1; B, k = 2; C, h = 5; D, h = 10 

lead to zero. The different result obtaind by Gaylord 3 was 
due to additional, arbitrary assumptions introduced into the 
formulae. 

The orientation-dependent free energy Fam in equation 
(23) does not depend on the current length of the crystalliz- 
ing chain, h4. The integration over u performed earlier, 
equation (20), has already taken into account all possible 
values of the vector h4. So, Fam from equation (23) is 
physically equivalent (but not identical) to the 'average' 
free energy obtained by Gaylord 3 from the integral, equa- 
tion (2), using the incomplete distribution fucntion W G. 
Fam can further be averaged over de4 or der if macroscopic 
properties of the network are analysed. 

To obtain an orientation distribution in the macroscopic 
system, expressed in a fixed-in-space coordinate system, 
~tetra should be averaged over all equiprobable directions 
of the vector e4: 

qjth,am~r; A) = (1/4~') f qttetr a (er; A, e4)de 4 (27) 

This integration can be performed numerically, or, in some 
cases, analytically. For uniaxial extension along the axis, Z: 

o 

0 x (28) 

~th,am can be obtained as a series of even powers of cos O, 
the angle between the Z-axis and crystal vector L" 

Figures 3 and 4 present examples of the distribution func- 
tion ~pth,a, (0), and Figure 5 gives examples of the axial 
orientation factor defined as: 

~hr'am = 1 - 3 (sin20)/2 (29) 

The crystal orientation function, ~th,am (0) is controlled 
separately by two parameters: Ane t and the elongation ratio, 
X. The sharpness of the distribution and the absolute value 
of the orientation factor increase monotonically with the 
parameter Anet at constant ;~ (Figure 4), and increase with 
the absolute value of lnX at constant hne t (Figure 3). 

THERMODYNAMICALLY-CONTROLLED ORIENTATION 
DISTRIBUTIONS OF CRYSTALS IN A CROSSLINKED 
SYSTEM 

In the coordinate system associated with the tetrahedron, 
the Boltzmann distribution of crystal directions, er  reads: 

~tetra = constant X exp[-Fam(~r)/kT] 

= constant X exp[Anet(eTAe~4)] (26) 

0 2  

where: 

constant = (1 /4rr)Bnet /s inh Bnet 

Ane t = 3 Jr J(1 + S)/(2(h20))1]2(1 + S - sS) 

Bne t = A net (e4 TA TA~4) 1/2 

08[ 
0 7  

0-6 

0.5 
J: 

c 
04 

c 
0 

0.3 

E 

• D 

C 

O1 

1 I ~ I I 
0 15 30 4 60 75 90 

Orientation angle, 0 (degrees) 

Figure 4 The averaged crystal orientation distribution, qJth,am (0) 
in a system subjected to uniaxial extension, h = constant = 2, values 
of the internal parameter, Anet:  A,  0; B, 2; C, 4; D, 8. Curve E 
(Ane t = oo) corresponds to the asymptotic distribution ~o~ (0) from 
equation (30) 
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A / - - -  

0 L ~ / , h I I 

4 8 12 
Elongation ratio, X 

Figure 5 Axial orientation factor ftoh'am related to the distribution 
function ,isth,am 10) plotted vs. extension ratio X. Values of the 
paramer Anet: A, 0; B, 2; C, 4; D, 6; E, 8. Curve F (Ane t = oo) cor- 
responds to the asymptotic orientation factor, for oo 

The asymptotic orientation distribution at Ane t ~ 0% 
shown in Figure 4 is equivalent to the orientation distribution 
of vectors h4,af in the system of affinely deformed tetra- 
hedra. At Ane t ~ oo crystals are all oriented exactly along 
the vectors h4,af. Such a distribution can be derived either 
from the Gaussian function of chain conformations integrated 
over the lengths of the vectorh (equation 18), or from con- 
siderations concerning a system of rigid rods embedded in a 
viscous continuum subjected to affine deformation n. The 
latter approach was applied in late thirties by Kratky 9 and 
then by Oka 1° to the so-called 'first limiting case' of mole- 
cular orientation 9. Both methods yield for the asymptotic 
distribution ~ (0): 

X3/47r } 

,I, . .(o) = Ix 3 + (1 cos20] 3/2 (30) 

The asymptotic function ~0. (equation 30) is shown as curve 
E in Figure 4, and the related asymptotic orientation factor 
/'or,~ as curve F in Figure 5. 

CRYSTAL ORIENTATION CONTROLLED BY 
AMORPHOUS AND CRYSTAL FREE ENERGY 

It seems important to compare crystal orientation effects 
related to the free energy of the amorphous, crosslinked 
polymer Faro with similar effects produced by orientation- 
dependent strain energy of crystals, Fcr, and hydrodynamic 
potential ~,  both discussed in ref 1. The comparison is diffi- 

cult, since both the strain energy of crystals and the hydro- 
dynamic potential are controlled by stress, while the free 
energy of network chains, Faro, is inherently dependent on 
deformation (tensor A, or extension coefficient X in uniaxial 
deformation). We will make the comparison using, as a first 
approximation, the theory of rubber elasticity for uncrys- 
tallized networks s to convert deformation into stress. The 
stress tensor p will be related to deformation gradient A by the 
equation: 

J2 = o k T A c ( A A  T - I )  (31) 

in which A c denotes network contraction factor (in this paper 
assumed to be ~A), o is the number of elastically effective 
network chains in unit volume, and I is the unit tensor. 
Equation (31) provides first approximation for the stress in 
partly crystallized networks at low degrees of crystallinity. 
Actually, the presence of crystallites in the network effects 
the distribution of crosslinks in space, the free energy and 
the stress in the system. As a measure of stress in uniaxial 
extension we will use the difference in normal stress com- 
ponents, (P33 - P l l )  which, with A c = ½ in equation (31) 
and deformation gradient tensor A from equation (28) re- 
duces to: 

Ap = P33 - Pl l  = (vkT/2) (  ;k2 - 1/)k) (32) 

We will compare stress differences Ap with the extension 
ratio k using equation (32) with o = 4.82 x 1019 cm -3, T 
= 350K. For polyethylene this corresponds to a molecular 
weight for network chains M = 104. The crystal orientation 
controlled by the free energy of the amorphous crosslinked 
part also depends on the group of molecular parameters, 
Ane t. For our calculations we will take Anet = 2 and Anet = 
o o  (asymptotic orientation function from equation 30). 
Orientation factors controlled by the strain energy of 
crystals and by the hydrodynamic potential (see ref 1) will 
be calculated with the parameters F/kT  = 7.83 x 10 -7 cm2/ 
dyne, and shape factor q~ = 1.355, yielding: 

Ath = 2.49 x 10 -15 (z2~p) 2 

Ahydr o = 1.06 X 10 -6 Ap 

with Ap expressed in dynes]cm 2. 
The results presented in Figure 6 show that in the range 

of moderate stresses (up to 3 x 107 dyne/cm 2) orientation 
effects of crystal strain (see ref 1) are negligible compared 
both with the effects of deformation in the amorphous sur- 
roundings in a crosslinked system or to the effect of hydro- 
dynamic potential in an uncrosslined system. In the range 
of moderate stresses the effect of strain energy in crystals 
leads to perpendicular orientation, for ( 0, and only above 
some limit, around Ap = 2.6 x 108 dyne/cm 2, for assumes 
positive values and starts to increase rapidly with the grow- 
ing stress. The effects of the hydrodynamic potential and 
of the deformation of amorphous, crosslinked surroundings 
are comparable one with the other. Orientation of crystals 
controlled by the crosslinked amorphous surroundings is 
very senstiive to the internal molecular parameter Ane t. The 
orientation factor fto h'am increases monotonically with Anet, 
reaching an asymptotic relation fo~ (X) at Ane t = 0% equiva- 
lent to all crystals oriented along the respective network 
chains. Orientation produced by hydrodynamic effects in 
uncrosslinked systems, fhrYdr° , seems to be stronger than 
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Figure 6 Crystal orientation fac to r /o r  plotted vs. the difference of 
normal stress components, z~p for  polyethylene subjected to ex- 
tensional deformations. Curve A: orientation control led by strain 
energy of polymer crystals, with Ath = 2.49 x 10 -15 (Ap)2 (ref 1). 
Curves B and C: orientation control led by free energy of  the amor- 
phous crosslinked phase. Curve B, Ane t = 2; Curve C, Ane t = =, 
asymptotic distr ibution function from equation 130). Curve D, 
orientation control led by hydrodynamic f low potential, with 
Ahydr  o = 1.06 x 10 -6 (ref 1) 

ftoh,am; it depends on the shape of the flowing particles, and 
disappears for cubical, or spherical crystals. At moderate 
and high asymmetry of crystals (the curve shown in Figure 
6 corresponds to the axial ratio 2: l),fohr ydr° is higher than 
.#top,am at any value of the parameter Ane t. For the example 
considered, and similar conditions, stress applied to an un- 
crosslinked polymer and inducing potential flow produces 
higher crystal orientation than the same stress applied to a 
crosslinked system in equilibrium. Since ftohr, cr and fohr ydr° 
at constant stress, Ap, are independent of the molecular 
weight of the polymer (see refs 1, 11) and f~o h,am shows only 
a slight dependence, this conclusion seems to indicate a more 
general regularity. 

DISCUSSION 

The results obtained in this paper indicate that crystal 
orientation controlled by the free energy of amorphous 
chains surrounding crystal in a crosslinked system is different 
to the effects produced by either the strain energy of the 
crystal itself, or the hydrodynamic potential of a flowing 
uncrosslinked system. The magnitude of the effect is dif- 
ferent (see Figure 6) and so are the main factors controlling 
the orientation behaviour. It is important to realize to what 
extent these results are affected by the specific molecular 
model analysed. 

Three assumptions involved in the present treatment limit 
the applicability of the obtained results, viz: 

(i) the crystallization is intramolecular, i.e. involves a 
single chain only; 

(ii) the degree of crystallinity is small, so that only a few 
network chains, and these only partly, are subjected to 
crystallization; 

(iii) only the effect of crystallization on nearest neighbour 
chains is considered (a single tetrahedron). 

The first assumption limits our analysis to chain-folded 
crystals or mono-chain helices. It is impossible to think of 
an extended-chain crystal composed of just one chain, and 
for such crystals a different model has to be chosen. The 

present analysis is sensible, provided that the actual crystal- 
lization morphology is chain-folded or helical. 

The assumption of low crystallinity concerns both the 
'local degree of transformations', s, and the fraction of 
chains which have undergone crystallization. Both these 
characteristics are assumed small compared with unity. The 
condition, s "~ 1 is necessary to treat both portions of the 
uncrystallized chain as Gaussian; in our model only one net- 
work chain out of four has undergone transformation. For 
higher crystallinities one should take into account tetrahedra 
with 0, 1, 2, 3 and 4 crystallized chains. So introduction of 
non-Gaussian statistics and extension of the one crystallized 
chain model would be necessary for the discussion of the 
effect of higher crystallinities on the thermodynamic and 
orientation behaviour. On the other hand, if a fraction of 
network chains much smaller than 1/4 is subjected to partial 
crystallization (i.e. not every tetrahedron includes a crystal) 
the model should be extended to cover more mobile junc- 
tions. This may affect quantitatively, but not qualitatively, 
the results discussed in this paper. 

The limitation of the degrees of freedom of the system 
to the position of a single junction, u, also distorts the real 
situation where not only nearest neighbours but also further 
junctions can experience the influence of the presence of a 
crystal. Qualitatively, a single vector u reflects the mecha- 
nisms responsible for the change in thermodynamic beha- 
viour. For quantitative analysis, however, the model should 
be extended to include systems with many junctions. 

With the above limitations, our analysis shows that crystal 
orientation in crosslinked polymers is controlled by the free 
energy of amorphous chains through two characteristics: 
deformation of the whole system (displacement gradient 
tensor A) and the internal parameter Anet which can be 
written in the following form: 

Ane t = [3/(2) 1/2] ks(n4) l /2(1  +S)/(1 + S - s S )  (33) 

k = r /w  is a morphological characteristic related to the degree 
of chain folding, k = 0 for a chain infinitely folded in a direc- 
tion perpendicular to crystal axisr,  and k = 1 for an ideal, 
extended chain (not realizable in single-chain crystallization). 
s = 6o/l 4 is the 'local degree of transformation' of the crys- 
tallizing chain 14, n4 is the number of statistical chain seg- 
ments in the crystallizing chain, and S is a parameter related 
to contour length distribution and can be represented as: 

S = 3(l)(1/l) (34) 

Ane t linearily increases with the parameter k, and crystal 
orientation distribution becomes the more sharp, the more 
extended (the less folded) are the chains within the crystal. 
Ane t also increases monotonically with the local crystallinity, 
s, from Anet = 0 at s = 0 (uniform orientation at the begin- 
ning of crystallization) to some limiting value at s = 1. At 
constant 'local crystallinity' s, Ane t increases, but at constant 
crystal length, r, Anet decreases with increasing contour 
length of the crystallizing chain 14, or with the number of 
statistical chain segments, n 4. Finally, Ane t monotonically 
increases with the molecular weight parameter S characteriz- 
ing the distribution of contour lengths (or molecular weights) 
of network chains. The effect of S is negligible at local 
crystallinities, s, up to 0.5. The parameter S depends on the 
shape and width of the molecular weight distribution. For 
a monodisperse polymer, S -- 3, independently of the average 
molecular weight of network chains. For a normalized 
'random' distribution: 
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f (  l ) = e x p [ - ( l -  a)[( (l) - a)]/((l)  - a) 

where a, the length of the statistical chain segment, is the 
minimum value of I in the system, we obtain: 

ween hydrodynamic and crystal strain effects. The problem 
involving higher crystallinities and other morphologies will 
be studied on the basis of different models. 

s --- - [3  <l>/(<t> - a ) l  e x p  [ a / ( ( 1 )  - a ) l  E i  [ - a / ( < l >  - a) ]  ACKNOWLEDGEMENT 

(34) 

where EiO is integral exponential function, and (1) is the 
average contour length of a network chain. Since (l) is always 
much larger than a, equation (35) reduces to: 
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S ~ 3(ln(l)/a - C) (36) REFERENCES 
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